Maximal Monotonicity, Conjugation and the Duality Product
نویسندگان
چکیده
Recently, the authors studied the connection between each maximal monotone operator T and a family H(T ) of convex functions. Each member of this family characterizes the operator and satisfies two particular inequalities. The aim of this paper is to establish the converse of the latter fact. Namely, that every convex function satisfying those two particular inequalities is associated to a unique maximal monotone operator. Partially supported by CNPq and by PRONEX–Optimization. Partially supported by CNPq Grant 301200/93-9(RN) and by PRONEX– Optimization.
منابع مشابه
Maximal monotonicity, conjugation and the duality product in non-reflexive Banach spaces
Maximal monotone operators on a Banach space into its dual can be represented by convex functions bounded below by the duality product. It is natural to ask under which conditions a convex function represents a maximal monotone operator. A satisfactory answer, in the context of reflexive Banach spaces, has been obtained some years ago. Recently, a partial result on non-reflexive Banach spaces w...
متن کاملLC-functions and maximal monotonicity
In this paper, we consider LC–functions, a class of special convex functions from the product of a reflexive Banach space and its dual into ]−∞,∞]. Using Fitzpatrick functions, we will show that the theory of LC–functions is a proper extension of the theory of maximal monotone sets. Various versons of the Fenchel duality theorem lead to a number of results on maximal monotonicity, some of them ...
متن کاملSum Formula for Maximal Abstract Monotonicity and Abstract Rockafellar’s Surjectivity Theorem
In this paper, we present an example in which the sum of two maximal abstract monotone operators is maximal. Also, we shall show that the necessary condition for Rockafellar’s surjectivity which was obtained in ([19], Theorem 4.3) can be sufficient.
متن کاملChapter 6 GENERALIZED CONVEX DUALITY AND ITS ECONOMIC APPLICATIONS *
This article presents an approach to generalized convex duality theory based on Fenchel-Moreau conjugations; in particular, it discusses quasiconvex conjugation and duality in detail. It also describes the related topic of microeconomics duality and analyzes the monotonicity of demand functions.
متن کاملThe sum of two maximal monotone operator is of type FPV
In this paper, we studied maximal monotonicity of type FPV for sum of two maximal monotone operators of type FPV and the obtained results improve and complete the corresponding results of this filed.
متن کامل